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Abstract-Solutions to singularities such as point force. point moment. edge dislocation and
transformation strain sp"t embedded in bonded elastic blocks of dissimilar materials are found to
relate to the solutions to the same singularities in an infinite homogeneous plane by a formula
independent of the nature of the singularities. This universal result is then used to analyze the
interactions between singularities and interface cracks. The complete solutions and stress intensity
factors are presented for two important interface crack configurations.

I. INTRODUCTION

Rccent intcrest in micromechanics calls for the analyses of the elastic fields for pointwise
singularities. such as point force. point moment, edge dislocation and circular trans­
formation strain spot, interacting with interfaces and cracks. For example, crack/dislocation
interaction plays an important role in understanding the brittle vs ductile response of
crystals (Thomson. 1')1\0) ; enhanced toughness in ZrOz-particie-enriched ceramics has been
modeled successfully in recent years. e.g. Rudiansky et at. (19R3). where an analysis of the
transformation strain spot interacting with cracks is usually the first stcp; embrittlcment/
ductilization of polycrystals by impurity segregation have received much attention
recently. mechanistic modelling of which has been attempted by considering crack tip
(anti-)shielding by impurities (essentially dilatation spots) in Weertman and Hack (1988).

Along with the intrinsic physical signilicance of these interaction solutions, they are
frequently used as kernel functions of integral equations. A well-known approach to simu­
late cracks by arrays of dislocations was explored extensively by Erdogan (1972). Recent
applications arc made by Hutchinson and his group to model phenomena such as crack
kinking. edge spalling. composite delamination. and to analyze some interface fracture
specimens. As suggested by the success of a method of analyzing homogeneous cracks
(Mews and Kuhn. 1988). use of point force solutions in a cracked bimaterial system as the
fundamental solutions, in conjunction with a procedure to extract mixed mode stress
intensity factors from path-independent integrals (Shih and Asaro. 1988). may lead to an
etlicient Boundary Element algorithm for interface crack analyses.

Apparently there are many applic.ttions for this class of solutions, which may partially
justify a unified presentation for such classical-looking problems. Another fact is that most
of the work cited above is confined to cracks in homogeneous materials, and consequently,
most singularity/crack interaction solutions scattered in the literature are for homogeneous
materials. As a matter of fact, this note results from the investigation of the author, and
the research group to which he belongs. on the mechanics of thin film and interface fracture
(He and Hutchinson. 1985a.b; Suo and Hutchinson. 19X5a.b. 1989). Attention here will be
focussed on the construction of the basic solutions. Guidelines for sophisticated applications
may be found in the above-mentioned papers.

The plane elasticity problem analyzed is depicted in Fig. 1. A singularity interacting
with the bimaterial interface is considred first (Fig. la). Without loss of generality, singu­
larities arc only embedded in material 2. The solution is built on the complex potentials for
the same singularity in an infinite homogeneous plane. As illustrated in Fig. 1, the interaction
between singularities and interfacial cracks is analyzed by superposition. To make the
scheme possible. one needs the solution to the problem specified in Fig. Ib. with interfacial
cracks loaded by traction on the crack faces. This latter problem has been solved by several
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Fig. l. Superposition scheme. (a) A singularity embedded in one of two well bonded blocks.
(b) Interface crack with traction prescribed on the faces. (c) Interaction between a singularity with

a traction-free crack.

authors (England. 1965; Erdogan. 1965; Rice and Sih. 1965; Cherepanov. 1979), and will
be adapted here by using the two Dundurs' parameters defined below.

The non-dimensional elastic moduli dependence of a bimaterial system, with simply
connected domain and traction prescribed on its boundary, may be expressed in terms of
two DlIndllr.l'· parameters (Dundurs, 1968)

f(/\z+ 1)-(/\1 + I)iX = _._._ ..__.__.... ,
f(/\z+ 1)+(/\1 + I)

( I )

Subscripts I and 2 refer to the two materials, /\ = 3- 4v for plane strain and (3 - v)/( I + v)
for plane stress, r = J/I/Jlz. V is Poisson's ratio and JI is shear modulus. The physically
admissible values of iX and II are restricted to a parallelogram enclosed by iX = ± I and
iX - 411 = ± I in the iX,ll-plane. The two parameters measure the elastic dissimilarity of two
materials in the sense that both vanish when the dissimilarity does. Two other bimaterial
parameters. I, the stijji/es.l' ratiu, and I;. the uscillatory index. are related to iX and fl.
n:spectively, by

("2 l+iX I I-fl
I = -. = "'-", /; = In ..-·..·

('I l-iX 2rr 1+11
(2)

whae (' = (/\ + I )/JI is a measure of the compliance of a material and will appear again.
Thus iX can be readily interpreted as a measure of the dissimilarity in stiffness of the two
materials. Material I is stitTer than 2 as iX > 0 and the material I is relatively compliant as
iX < O. The parameter e. thus II, as has been discussed extensively in the literature on
interfacial fracture mechanics, is responsible for various pathological behaviors at an
interfacial crack tip (e.g. Rice, 1988). However. e is typically very small. Indeed. since
1//1 ~ 0.5, from (2) one finds lei ~ In (3)/2rr :::::: 0.175. Various proposals for handling or
ignoring the e-etTects have been considered (Suo and Hutchinson, 1988b; Rice, 1988). In
this paper no special consideration is given to such etTects as crack face contact due to non­
zero f. in deriving the results for the crack/singularity interaction.

2. COMPLEX POTENTIALS

Stresses and displacements for a homogeneous body under plane deformation can be
represented by lwo standard Muskhelishvili complex potentials ¢(=) and 1/1(=). However,
another pair of commonly used potentials, <1>(=) and !l(=). defined as

<1>(=) = ¢'(=), !l(=) = [=¢'(=) +1/1(=»)', (3)

prove to be more convenienl for our purpose. Stress displacement components are then
derived from
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Fig. 2. A coordinate translation.

O"n + O"y. = 2[<1>(:) + <1>(:)]

O".y +iO".{. = <1>(:) +0(:) + (£-:)<1>'(:)

~

-2ip ~ (u,,+iu f ) = ,,<1>(:)-0(:)-(£-:)<1>'(:).
l/X '

(4)

One can confirm a useful coordinate translation rule (see Fig. 2). Suppose that <1>.(:.)
and 0.(:.) are the potentials in the coordinate system :. = x. +iy•• while <1>(:) and 0(:)
are the potentials for the same problem in the coordinate system: = x + iy. where:. = : -so
then

(IJ(:) = <I>.(:-s). 0(:> = O.(:-s)+(s-.nl[l~(:-s). (5)

Potentials for singularities in an infinite homogeneous plane are the building blocks of
this paper. Listed below are some frequently used examples.

An l'{~ql' dislocation at z = s

(1)0(:) = B[.L.J. Oo(z) = B[ .~-s_'J+ S[_I.J
:-s (:_S)2 :-s

(6)

where bf and by are the x- and y-components of the dislocation.

A point force at z = s

(1)0(:) = -Q[_IJ. 00(:) = -Q[(5-s)2J+"Q[_1J
;-5 :-5 :-5

(7)

where P f and p. are the force components in the x and y directions.

A point moment M at z = s

(8)

A circular transformation strain spot
Let a circular region of radius R and center; = 5 in an infinite homogeneous plane

undergo a uniform transformation straining t.". Continuity of tractions and displacements
across the circular boundary is maintained. This is a 20 version of the Eshelby problem.
which is included in an unpublished report by Hutchinson (1974). The potentials for the
elastic field outside the circular spot. Iz-si > R. are
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<1>0(=) = -AR1 [(_1-,]
=-s)-

,[ I ] ~[I] ,[ s-s ]0 0 (=) = (A+4B)R- (=_S)1 -3AR (=-s)~ +2AR- (=-s»)

B = _'_I (eu+e n .).

1+1\ 2
(9)

3. SINGULARITIES INTERACTING WITH A BIMATERIAL INTERFACE

Now the problem in Fig. la is considered. Let the potentials for the two blocks be

__ {<I>'(=) +<1>0(=)' = in No. I 0 __ {01(=)+00(=). = in No. I
<1>(-) - m'() Ih () . N ., (-) - (""\'() 0 ( . N .,",- = +"'0 = • = In O. ~ H- = + 0 =). = In O. ~

( 10)

where <1>0(=) and 0 0(=) signify the potentials for a singularity in an infinite homogeneolls
planc of material 2. which could be one of those listed in Section 2. Obviously <1>0(=). 0 0(=).
<1>1(=) and 0'(=) are analytic for = above the x-axis. while <(>1(=) and <1>1(=) are analytic for
= below the x-axis. The task below is to relate <1>1(=). 0'(=). «>~(=) and O~(=) to <110(=) and
0 0 (=), The continuity of a.... + ia" across the interface requires

By the standard analytic continuation arguments it follows that

«1'(=) = 0 1(=). = in No.2

<~~(=) = 0 I (=). = in No. I.

The continuity of displacements across the interface, with the aid of (10). leads to

Again by analytic continuity arguments one obtains

Here I\. and n measure the inhomogeneity by

( II )

( 12)

( 13)

( 14)

cx+III\. = ..._.
I -II'

IX - II
n =1+/1' (15)

Now with (12) and (14) one can rewrite (10) explicitly as

{
( 1+ 1\.)<(>0(=). = in No. I {( 1+ n)Oo(=). = in No. I

<(>(=) = -.., 0(=) = "..,
<(>0(=) + nOo(=), = In No. _ 0 0(=) +1\.<(>0(=). = In No. _

(16)

so that the singularity solutions in bonded half-planes or dissimilar materials can be con­
structed using the corresponding singularity solutions in an infinite homogeneous plane by
eqn (16). This relation is universal in the sense that it is completely independent of the
physical nature of the singularities.

Singularities in a half-space interacting with the traction-free surface can be treated as
a special case by letting IX = - I. or I\. = n = - I. Specializing (16) to this case one obtains
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<1>(=) = <1>0(=) - 0 0(:), 0(:) = 0 0(=) - <1>0(=).

4. INTERFACIAL CRACKS
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(16a)

The singular stress field of an interfacial crack tip shows an r- I! 2+ it type singularity.
Accordingly. the complex stress intensity factor. K = K, + iK:. is defined (Hutchinson
et al.. 1987) such that the traction in the interface a distance r ahead of the crack tip is

. K
('."1' +la.... = r::;- rlt

..../ .:.rrr
(17)

and the relative crack face displacements a distance r behind the crack tip are given by

(18)

thereby the energy release rate is

( 19)

To make the superposition scheme in Fig. I possible. one needs the complete solution
for the problem in Fig. I b. Suppose the cracks considered lie on the interface of two
dissimilar material blocks. It suflices to consider only the case of traction prescribed on the
crack faces. for other methods of loading may be reduced to this case by superposition.
This problem was solved in 1965 oy England. Erdogan, and Rice and Sih. Outlined below
is the solution in the present notation. The derivation is simplified to some extent by the
use of the Oundurs' parameters.

Let the potentials for the two half·planes in Fig. I b be wrillen as

{
(I>"(:), : in No. I {O"(:), : in No. I

(1)(:) = h' 0(:) = h • ?
(I> (:), : In No.2 0 (:), Z In No. _

(20)

where the superscript "a" indicates that the potential is for the material above. while "b"
is for the material below. The continuity of a",. + ia ... aeross the interface requires

<1>"(:) = Oh(:). : in No.2

<6&(:) = 0"(:), =in No. I. (21)

With (21) one can show that the derivative of displacement jumps across the interface. or
the components of the Burgers vector. can be written as

(22)

Consequently, due to the continuity of the displacement across the bonded portion of the
interface. one can define a function f(:) which is analytic in the whole plane except on the
crack lines. such that

0"(:) = (I - {3)f(:), : in No. I

Oh(:) = (I +{3)f(:). =in No.2.

In terms of f(=), the Burgers vector (22) can be written as

(23)
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(24)

and the traction on the interface is given by

The prescribed traction on the cracks thus leads to the following Hilbert problem

(25)

(I + [3)j'"- (x) + (I - [3)f+ (x) = O',,(X) + iO'".(x), on crack lines. (26)

Suppose there are Tl finite cracks in the intervals (ar b/) and two semi-infinite cracks
in the intervals ( - 'X:, hI) and (aI), + oc), respectively, on the x-axis. Following the methods
of Muskhelishvili (1953), a homogeneous solution of eqn (26) [i.e. a solution of f(:) when
setting the right-hand side of eqn (26) to be zero] can be written as

n

XC:) = n(:~a,) li"i'(:_hl)-I~+i"

,~!l

(27)

where the branch cuts arc chosen along the crack lines so that the product for each tinite
crack behaves as Ii: for large:. The solution to (26) is

. I X(:) fl1,,.(.\,) +il1,,(.\')
/(::) =--; '- --, dX+X(:)I'(::)
. l-fl2m X'(x)(x-::)

(2R)

where the integral should he taken over the union of the cracks, and 1'(:) is a polynomial
which should be chosen so that f<::) is bounded at infinity and the net Burgers vector for
eaeh of the fI (inite cracks is zero. From (24) this latter statement leads to II equations

f'" [f (x) - I' (x)l dx = 0, j = 1,2, ... ,fl.

"I

(29)

Thus l(:) can be determined and also the potentials <1>(:) amI n(:) by (20), (21) and (23).
Once I(:) is obtained, the complex stress intensity factor defined in (17) can be extracted
from (25). Noticing that I (x) = I' (x) = /(x) on the bonded portion of the interface,
one obtains

K = J2-~ lim 2(x-a) I ~ i"/(X)
\"-a

(30)

if the crack tip is at x = a, running in the direction of positive x-axis.
Two configurations depicted in Fig. 3 arc of particular importance in the application.

The cracks nrc loaded by equal but opposite tractions (1,y+ i(1 '" = - T(x) on the crack faces.
One can verify for the semi-infinite crack

# 1
y

a) b)
Fig. 3. Two crack configurations.
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X(=) = =-IZ+", P(=) = o.
1139

(31)

Thus !(=) can be determined from (28), and the complex stress intensity factor is given by

(2 fO T(t)
K = '1/; cosh 1te -cc (-t) I Z+U dt.

In the case of a finite crack of length 2a the corresponding results are

and the stress intensity factor at the right-hand side tip is

A '.f+u (a+t)ln+i'
K= -cosh1te(2a)-I:--" ~ T(t)dt.

1t -u a t

(32)

(33)

(34)

A short list of stress intensity factors for some special loading cases can be found in
Shih and Asaro (1988).

5. SINGULARITIES INTERACTING WITH INTERFACIAL CRACKS

Now thc interaction prohlem illustratcd in Fig. Ic can he readily solved by the supcr­
position ofthc solutions obtaincd in the last two sections. This scheme was used by Thomson
(19R6) to construct the interaction solution of a dislocation and a crack in a homogeneous
hody.

The potcntials for a singularity at == .\' in an infinite homogcneous plane can be written
in general as

.\/ Am
(1)0(=) = ~­L. ( __ ")'"

,"_ I - oJ

(35)

where the coeflicients A", and 8 m may depend on oS and the nature of the singularity. Several
examples arc given in Section 2. Suppose the potentials (35) are known, the potentials for
the same singularity embedded in one of two bonded blocks as in Fig. la are readily
constructed by (16). In particular, the stresses along the interface in Fig. la are

O'yv(x)+iO'ty(x) = (I +A)(l>o(x)+(1 +0)0 0 (.\'), (36)

The negatives of these stresses arc applied to the faces of the crack in Fig. lb. [t follows
from (28) that

!(=) = I ~!~? f( I +A)<l~:x) +(I ~0)00 (.\') dx.
1-IJ_1t1 X (x)(x-_)

(37)

Here we have set P(=) = O. One has to specify the crack configuration in order to evaluate
the integral

__I f( 1+ A)<t>;;"(x) + (I + O)Oo(x)
I -.., . + ()( _ dx

_1tI X X x-~)
(38)

where the integral should be taken on the crack lines. Only the two configurations depicted
in Fig. 3 will be analyzed below. Consider the following contour integral
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Fig. 4. Integration cont,'ur,

with the contours specilled in Fig. 4. It is easy to confIrm

..,

J=J'+I~f![

(39)

(40)

where J, is the same integral as (39) integrated over a circle 1:1 = R as R ....... x. It can he
shown that

J, = (1+1\).·" +(1 +[I)1J 1 (41 )

for the finite crack and .I, = () for the semi-inllnite crack. On the other hand J can he
evaluatcd hy its residucs

I .\1_

J= [(I+I\)I[IIl(:)+-([+[I)UII (:)I+- I [(I+I\).-I...r·;" 1(:,·i)+(I+[[)IJ",f:" I(:,S)]
xl:) ", .. ,

(42)

where

Conseljl1t:ntly, one obtains

I d'" [ I JF,,(:. s) :: .
III! d.I/" X(.I')(.I'-:)

(43)

f(:) :: - WI + I\)I[),~(:) + (I + n)!1 I1 (:)]

Xl:) .11 _ •

-..., I [( 1+ 1\),-/",['," . d:,.i) + (I + n)B",I'~" d:, s)] (44)
.;. m 1

for the semi-infinite crack and

X(:) - 1-
!(=)= .., [(I+t\)Al+(I+n)Bd-~[(I+t\)I[I,,(=)+(I+n)!1,,(=)l

X(=) II -- .., I [(I+t\)A",F,,, ,(=..i)+(I+n)B",F,,, ,(=,.1')] (45)
- "'''~ I

for the flnite crack. Therefore the potentials for the problem in Fig. Ib can be obtained
from (20), (21) and (23) with /(=) given in (44) and (45). The potentials for the interaction
problem in Fig. Ie are thus the superposition of (16) and those for Fig. lb.

Since no stress intensity is present in the structure in Fig. Ia, one can deduce the stress
intensity factors from (44) and (45). The results arc
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~ .'4

K= -,./2n I [(I +A).4",F",_,(O.S)+(1 +O)B",F",_,(O.S)]
",-I

I d'"
F",(O.s) = -, d J" [5 I ~-I"]

m . .\

for the semi-infinite crack and

.\1

.... 2rr(:!a) I>.. L [(I+A).4mFm_lla.S)+(I+O)B",Fm_l(a.S)]
In"'" I

for the finite crack.

6. SUMMARY
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(46)

(47)

Compkte solutions to three problems for bimaterial systems specified in Fig. I can be
found in this paper. Singularities of an arbitrary physical nature arc treated within the
same framework. In particular. a universal relation is found between the potentials for
singularities in an infinite homogeneous plane and in bonded blocks of dissimilar materials
[eqn (16) abovel. Stress intensity fat:tors arc identified for the two crat:k configurations for
both face-Imlded problem [see rig. Iband eqns (32.34)1 and the interaction problem (see
Fig. It: und eqns (46. 47)1. It is believed thut the present work will be helpful for those who
are inten:stcd in mit:romct:hunit:s modelling as illustrated in thc Introdut:tion. Parallel results
for t:rucks on the interfacc bctween dissimilar unisotropic bodit:s will bc reportcd in the
sequel of this paper (Suo. 19X9).
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